H(t)=-16t^2+130t+12

Simple and best practice solution for H(t)=-16t^2+130t+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+130t+12 equation:



(H)=-16H^2+130H+12
We move all terms to the left:
(H)-(-16H^2+130H+12)=0
We get rid of parentheses
16H^2-130H+H-12=0
We add all the numbers together, and all the variables
16H^2-129H-12=0
a = 16; b = -129; c = -12;
Δ = b2-4ac
Δ = -1292-4·16·(-12)
Δ = 17409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-129)-\sqrt{17409}}{2*16}=\frac{129-\sqrt{17409}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-129)+\sqrt{17409}}{2*16}=\frac{129+\sqrt{17409}}{32} $

See similar equations:

| c=2(3.14)(41) | | c=9(3.14)(2) | | c=2(3.14)(6.2) | | x^2+10x=24^2 | | -3(c=1)-4c=60 | | 2(x+3)+2(2x+1)=26 | | 77+6x=11+12x | | 2(4x−11)=102(4x−11)=10 | | (2x+1)=96 | | z-81=0 | | 12x=4/9 | | 12915.22=12000*2.7182^(r*1.17) | | 4(2p)=4(-p) | | 12915=12000*2^(r*2) | | 32+t=1232+t=12 | | 2(-3x+10)=44 | | 0=3r^2-28r+48 | | n/3=16/12 | | 0=3r^-28r+48 | | (1/x-1)+(1/x+2)=7/10 | | 3b+5-1=23 | | (1/3)(440)(440)h=18,069,333.33 | | 9y+4=85 | | c/3-2=9 | | 17-5u=48 | | (6x)+(5x+26)=180 | | (3x-13)=52 | | 1/2(x•2x)=240 | | 8x-9=4x-1. | | 12=16x^2+32x | | 2^p+3+2^p=18 | | (4n-3)^2=0 |

Equations solver categories